Big data in Antarctic sciences – current status, gaps, and future perspectives
Angelika Graiff
Institute of Biological Sciences, Applied Ecology and Phycology,
University of Rostock, 18059 Rostock, Germany
Matthias Braun
Institute of Geography, Department of Geography and Geosciences,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen,
Germany
Amelie Driemel
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Infrastructure/Administration, Computing and Data Centre, 27570
Bremerhaven, Germany
Jörg Ebbing
Institute of Geosciences, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
Hans-Peter Grossart
Department of Limnology of Stratified Lakes, Leibniz-Institute of
Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
Institute
for Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
Tilmann Harder
Marine Chemistry, University of Bremen, 28359 Bremen, Germany
Alfred
Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section
Ecological Chemistry, 27570 Bremerhaven, Germany
Joseph I. Hoffman
Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
Boris Koch
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Florian Leese
Department of Technology, University of Applied Sciences, 27568
Bremerhaven, Germany
Judith Piontek
Aquatic Ecosystem Research, Faculty of Biology, University of
Duisburg-Essen, 45141 Essen, Germany
Centre for Water and Environmental Research
(ZWU), University of Duisburg-Essen, 45141 Essen, Germany
Mirko Scheinert
Biological Oceanography, Leibniz Institute for Baltic Sea Research, 18119
Rostock-Warnemünde, Germany
Institut für Planetare Geodäsie, Technische Universität Dresden, 01062 Dresden, Germany
Petra Quillfeldt
Department of Animal Ecology & Systematics, Justus Liebig
University Giessen, 35392 Giessen, Germany
Jonas Zimmermann
Botanic Garden and Botanical Museum Berlin-Dahlem, Freie
Universität Berlin, 14195 Berlin, Germany
Ulf Karsten
CORRESPONDING AUTHOR
Institute of Biological Sciences, Applied Ecology and Phycology,
University of Rostock, 18059 Rostock, Germany
Related authors
Angelika Graiff and Julia Ehrlich
Polarforschung, 92, 25–26, https://doi.org/10.5194/polf-92-25-2024, https://doi.org/10.5194/polf-92-25-2024, 2024
Jonas Liebsch, Jörg Ebbing, and Kenichi Matsuoka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1905, https://doi.org/10.5194/egusphere-2025-1905, 2025
Short summary
Short summary
The evolution of the Antarctic ice sheets depends, in addition to factors representing the warming climate, on the earth structure beneath the ice. What’s beneath the ice is largely inaccessible for direct sampling, but can be interpreted with the use of satellite or airborne measurements. We apply an unsupervised machine learning method to such data in East Antarctica to test whether this can ease interpretation and hence our understanding of what rocks are beneath the ice.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025, https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean processes related to the mass balance of glaciers in northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79° N Glacier. We find that together, the different in situ and remote sensing observations and model simulations reveal a consistent picture of a coupled atmosphere–ice sheet–ocean system that has entered a phase of major change.
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data, 17, 1761–1780, https://doi.org/10.5194/essd-17-1761-2025, https://doi.org/10.5194/essd-17-1761-2025, 2025
Short summary
Short summary
Geodetic GPS measurements in Antarctica have been used to track bedrock displacement, which is vital for understanding geodynamic processes such as plate motion and glacial isostatic adjustment. However, the potential of GPS data has been limited by its partially fragmented availability and unreliable metadata. A new dataset, which spans the period from 1995 to 2021, offers consistently processed coordinate time series for 286 GPS sites and promises to enhance future geodynamic research.
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025, https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constraining ice modelling. We apply a deep-learning framework to multi-spectral Landsat imagery to create a calving front record for 42 key outlet glaciers of the Antarctic Peninsula Ice Sheet. The resulting data product includes 4817 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck
Solid Earth, 15, 1419–1443, https://doi.org/10.5194/se-15-1419-2024, https://doi.org/10.5194/se-15-1419-2024, 2024
Short summary
Short summary
Transform faults are conservative plate boundaries where no material is added or destroyed. Oceanic fracture zones are their inactive remnants and record tectonic processes that formed oceanic crust. In this study, we combine high-resolution data sets along fracture zones in the Gulf of Guinea to demonstrate that their formation is characterized by increased metamorphic conditions. This is in line with previous studies that describe the non-conservative character of transform faults.
Felix L. Arens, Alessandro Airo, Christof Sager, Hans-Peter Grossart, Kai Mangelsdorf, Rainer U. Meckenstock, Mark Pannekens, Philippe Schmitt-Kopplin, Jenny Uhl, Bernardita Valenzuela, Pedro Zamorano, Luca Zoccarato, and Dirk Schulze-Makuch
Biogeosciences, 21, 5305–5320, https://doi.org/10.5194/bg-21-5305-2024, https://doi.org/10.5194/bg-21-5305-2024, 2024
Short summary
Short summary
We studied unique nitrate-rich soils in the hyperarid Atacama Desert that form brines at night under high relative humidity. Despite providing water for microorganisms, these soils exhibit extremely low microbial activity, indicating that the high nitrate levels inhibit microbial life. On the other hand, enriched organic matter indicates their potential preservation. This research helps to understand the limits of life in extreme environments and aids in the search for signs of life on Mars.
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024, https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Short summary
Comprehensive datasets of calving-front changes are essential for studying and modeling outlet glaciers. Current records are limited in temporal resolution due to manual delineation. We use deep learning to automatically delineate calving fronts for 23 glaciers in Greenland. Resulting time series resolve long-term, seasonal, and subseasonal patterns. We discuss the implications of our results and provide the cryosphere community with a data product and an implementation of our processing system.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Angelika Graiff and Julia Ehrlich
Polarforschung, 92, 25–26, https://doi.org/10.5194/polf-92-25-2024, https://doi.org/10.5194/polf-92-25-2024, 2024
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024, https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Short summary
Geothermal heat flow influences ice sheet dynamics, making its investigation important for ice-covered regions. Here we evaluate the sparse measurements for their agreement with regional solid Earth models, as well as with a statistical approach. This shows that some points should be excluded from regional studies. In particular, the NGRIP point, which strongly influences heat flow maps and the distribution of high basal melts, should be statistically considered an outlier.
Matthias O. Willen, Martin Horwath, Eric Buchta, Mirko Scheinert, Veit Helm, Bernd Uebbing, and Jürgen Kusche
The Cryosphere, 18, 775–790, https://doi.org/10.5194/tc-18-775-2024, https://doi.org/10.5194/tc-18-775-2024, 2024
Short summary
Short summary
Shrinkage of the Antarctic ice sheet (AIS) leads to sea level rise. Satellite gravimetry measures AIS mass changes. We apply a new method that overcomes two limitations: low spatial resolution and large uncertainties due to the Earth's interior mass changes. To do so, we additionally include data from satellite altimetry and climate and firn modelling, which are evaluated in a globally consistent way with thoroughly characterized errors. The results are in better agreement with independent data.
Reinhard Dietrich, Christoph Knöfel, Mirko Scheinert, and Ralf Rosenau
Polarforschung, 92, 1–13, https://doi.org/10.5194/polf-92-1-2024, https://doi.org/10.5194/polf-92-1-2024, 2024
Short summary
Short summary
Drygalski führte in den Jahren 1891 und 1892/93 Forschungsarbeiten in Westgrönland durch, wobei zur Überwinterung eine Forschungsstation am Großen Karajak-Gletscher errichtetet wurde. An gleicher Stelle erfolgten durch die TU Dresden 2007 und 2019 geodätische Feldarbeiten. Im Beitrag werden das Areal der damaligen Station sowie die Forschungsarbeiten Drygalskis vorgestellt. Ein Vergleich mit heutigen Messungen zeigt, dass sich der Große Karajak-Gletscher in 120 Jahren kaum verändert hat.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022, https://doi.org/10.5194/se-13-431-2022, 2022
Short summary
Short summary
We present a new 3D crustal model of Volgo–Uralia, an eastern segment of the East European craton. We built this model by processing the satellite gravity data and using prior crustal thickness estimation from regional seismic studies to constrain the results. The modelling revealed a high-density body on the top of the mantle and otherwise reflected the main known features of the Volgo–Uralian crustal architecture. We plan to use the obtained model for further geothermal analysis of the region.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Maximilian Lowe, Jörg Ebbing, Amr El-Sharkawy, and Thomas Meier
Solid Earth, 12, 691–711, https://doi.org/10.5194/se-12-691-2021, https://doi.org/10.5194/se-12-691-2021, 2021
Short summary
Short summary
This study estimates the gravitational contribution from subcrustal density heterogeneities interpreted as subducting lithosphere beneath the Alps to the gravity field. We showed that those heterogeneities contribute up to 40 mGal of gravitational signal. Such density variations are often not accounted for in Alpine lithospheric models. We demonstrate that future studies should account for subcrustal density variations to provide a meaningful representation of the complex geodynamic Alpine area.
Cited articles
Albarano, L., Esposito, R., Ruocco, N., and Costantini, M.: Genome Mining as
New Challenge in Natural Products Discovery, Mar. Drugs, 18, 199,
https://doi.org/10.3390/md18040199, 2020.
Arribas, P., Andújar, C., Bohmann, K., deWaard, J. R., Economo, E. P., Elbrecht, V., Geisen, S., Goberna, M., Krehenwinkel, H., Novotny, V., Zinger, L., Creedy, T. J., Meramveliotakis, E., Noguerales, V., Overcast, I., Morlon, H., Papadopoulou, A., Vogler, A. P., and Emerson, B. C.: Toward global integration of biodiversity big data: a harmonized
metabarcode data generation module for terrestrial arthropods, GigaScience,
11, giac065, https://doi.org/10.1093/gigascience/giac065, 2022.
Baumhoer, C., Andreas, D., Kneisel, C., and Kuenzer, C.: Automated
Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery
Using Deep Learning, Remote Sens., 11, 1–22 https://doi.org/10.3390/rs11212529, 2019.
Bayraktarov, E., Ehmke, G., O'Connor, J., Burns, E. L., Nguyen, H. A., McRae,
L., Possingham, H. P., and Lindenmayer, D. B.: Do Big Unstructured
Biodiversity Data Mean More Knowledge? Front. Ecol. Evol., 6, 239,
https://doi.org/10.3389/fevo.2018.00239, 2019.
Boening, C., Dispert, A., Visbeck, M., Rintoul, S. R., and Schwarzkopf, F. U.: The response of the Antarctic Circumpolar Current to recent climate change, Nat. Geosci., 1, 864–869, https://doi.org/10.1038/ngeo362, 2008.
Carroll, G., Slip, D. J., Jonsen, I., and Harcourt, R. G.: Supervised
accelerometry analysis can identify prey capture by penguins at sea, J. Exp.
Biol., 217, 4295–302, https://doi.org/10.1242/jeb.113076, 2014.
Cavan, E. L., Belcher, A., Atkinson, A., Hill, S. L., Kawaguchi, S., McCormack, S., Meyer, B., Nicol, S., Ratnarajah, L., Schmidt, K., Steinberg, D. K., Tarling, G. A., and Boyd, P. W.: The importance of Antarctic
krill in biogeochemical cycles, Nat. Commun., 10, 4742,
https://doi.org/10.1038/s41467-019-12668-7, 2019.
Chang, W. and Grady, N.: NIST Big Data Interoperability Framework: Volume
1, Definitions, Special Publication (NIST SP), National Institute of
Standards and Technology, US Department of Commerce,
https://doi.org/10.6028/NIST.SP.1500-1r2, 2019.
Chevrette, M. G., Gavrilidou, A., Mantri, S., Selem-Mojica, N., Ziemert, N.,
and Barona-Gòmez, F.: The confluence of big data and evolutionary genome
mining for the discovery of natural products, Nat. Prod. Rep., 38,
2024–2040, https://doi.org/10.1039/D1NP00013F, 2021.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver A. J., and Wehner, M.: Long-term Climate
Change: Projections, Commitments and Irreversibility, in: Climate Change
2013, the Physical Science Basis, Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Cuzin-Roudy, J., Irisson, J. O., Penot, F., Kawaguchi, S., and Vallet, C.:
Southern Ocean Euphausiids, in: Biogeographic Atlas of the Southern Ocean,
edited by: De Broyer, C., Koubbi, P., Griffiths, H. J., Raymond, B., Udekem
d'Acoz, C., Van de Putte, A. P., Danis, B., David, B., Grant, S., Gutt, J., Held,
C., Hosie, G., Huettmann, F., Post, A., and Ropert-Coudert, Y., Scientific
Committee on Antarctic Research, Cambridge, 309–320, ISBN
978-0-948277-28-3, 2014.
Danis, B., Van de Putte, A., Convey, P., Griffiths, H., Linse, K., and
Murray, A.E.: Editorial: Antarctic Biology – Scale Matters, Front. Ecol.
Evol. 8, 91, https://doi.org/10.3389/fevo.2020.00091, 2020.
Davari, A., Islam, S., Seehaus, T., Hartmann, A., Braun, M., Maier, A., and
Christlein, V.: On Mathews Correlation Coefficient and Improved Distance Map
Loss for Automatic Glacier Calving Front Segmentation in SAR Imagery, IEEE
T. Geosci. Remote, 1–12, https://doi.org/10.1109/TGRS.2021.3115883, 2021.
Diebold, F. X.: A Personal Perspective on the Origin(s) and Development of `Big Data': The Phenomenon, the Term, and the Discipline, Second Version, PIER Working Paper No. 13-003, https://doi.org/10.2139/ssrn.2202843, 26 November 2012.
Dietze, M. C.: Ecological Forecasting, Princeton University Press, 288 pp.,
ISBN 9780691160573, 2017.
Dittert, N., Corrin, L., Diepenbroek, M., Grobe, H., Heinze, C., and Ragueneau, O.: Management of (pale-) oceanographic data sets using the PANGAEA information system: the SINOPS example, Comput. Geosci., 28, 789–798, https://doi.org/10.1016/S0098-3004(01)00112-1, 2002.
Flexas, M. M., Thompson, A. F., Schodlok, M. P., Zhang, H., and Speer, K.:
Antarctic Peninsula warming triggers enhanced basal melt rates throughout
West Antarctica, Sci. Adv. 8, eabj9134, https://doi.org/10.1126/sciadv.abj9134, 2022.
Friedl, P., Seehaus, T., and Braun, M.: Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data, Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, 2021.
Groh, A. and Horwath, M.: Antarctic Ice Mass Change Products from
GRACE/GRACE-FO Using Tailored Sensitivity Kernels, Remote Sens., 13, 1736,
https://doi.org/10.3390/rs13091736, 2021.
Gutt, J., Hosie, G., and Stoddart, M.: Marine Life in the Antarctic, in:
Life in the world's oceans: diversity, distribution, and abundance, edited
by: McIntyre, A. D., Wiley Blackwell, Oxford, 203–220, 2010.
Imker, H. J.: 25 Years of Molecular Biology Databases: A Study of
Proliferation, Impact, and Maintenance, Front. Res. Metr. Anal., 3, 18, https://doi.org/10.3389/frma.2018.00018, 2018.
IPCC: Climate Change 2021, The Physical Science Basis, Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani,
A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb,
L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, Cambridge, United Kingdom, 2391 pp.,
https://doi.org/10.1017/9781009157896, 2021.
Johnson, K. S., Berelson, W. M., Boss, E. S., Chase, Z., Claustre, H., Emerson,
S. R., Gruber, N., Kortzinger, A., Perry, M. J., and Riser, S. C.: Observing
Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders
Prospects for a Global Array, Oceanogr., 22, 216–225,
https://doi.org/10.5670/oceanog.2009.81, 2009.
Kitchin, R. and McArdle, G.: What makes Big Data, Big Data? Exploring the
ontological characteristics of 26 datasets, Big Data Soc., 3, 1–10,
https://doi.org/10.1177/2053951716631130, 2016.
Ladds, M. A., Thompson, A. P., Kadar, J.-P., Slip, D. J., Hocking, D. P., and
Harcourt, R. G.: Super machine learning: improving accuracy and reducing
variance of behaviour classification from accelerometry, Anim. Biotelemetry,
5, 8, https://doi.org/10.1186/s40317-017-0123-1, 2017.
LaDeau, S. L., Han, B. A., Rosi-Marshall, E. J., and Weathers, K. C.: The next
decade of big data in ecosystem science, Ecosyst., 20, 274–283,
https://doi.org/10.1007/s10021-016-0075-y, 2017.
Lee, H. C., Lai, K., Lorenc, M. T., Imelfort, M., Duran, C., and Edwards, D.:
Bioinformatics tools and databases for analysis of next-generation sequence
data, Brief. Funct. Genom., 11, 12–24, https://doi.org/10.1093/bfgp/elr037,
2012.
Leefmann, T., Frickenhaus, S., and Koch, B.P.: UltraMassExplorer: a
browser-based application for the evaluation of high-resolution mass
spectrometric data, Rapid Commun. Mass Spectrom., 33, 193–202,
https://doi.org/10.1002/rcm.8315, 2019.
Levine, R. M., Fogaren, K. E., Rudzin, J. E., Russoniello, C. J., Soule, D. C., and Whitaker, J. M.: Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science, Front. Mar. Sci., 7, https://doi.org/10.3389/fmars.2020.593512, 2020.
Li, X., Che, T., Li, X., Wang, L., Duan, A., Shangguan, D., Pan, X., Fang,
M., and Bao, Q.: CASEarth Poles: Big Data for the Three Poles, Bull. Am.
Meteorol. Soc., 101, 1475–1491, https://doi.org/10.1175/BAMS-D-19-0280.1,
2020.
Loebl, E., Scheinert, M., Horwath, M., Heidler, K., Christmann, J., Phan,
L. D., Humbert, A., and Zhu, X. X: Extracting Glacier Calving Fronts by Deep
Learning: The Benefit of Multispectral, Topographic, and Textural Input
Features, IEEE T. Geosci. Remote, 60, 4306112, https://doi.org/10.1109/TGRS.2022.3208454, 2022.
Loeffler, F., Wesp, V., König-Ries, B., and Klan, F.: Dataset search in
biodiversity research: Do metadata in data repositories reflect scholarly
information needs?, PLoS ONE, 16, e0246099,
https://doi.org/10.1371/journal.pone.0246099, 2021.
Mason, C. E., Afshinnekoo, E., Tighe, S., Wu, S., and Levy, S.: International
Standards for Genomes, Transcriptomes, and Metagenomes, J. Biomol. Tech.,
28, 8–18, https://doi.org/10.7171/jbt.17-2801-006, 2017.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions, in:
IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P.,
Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M.,
Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University
Press, Cambridge, United Kingdom, 203–320,
https://doi.org/10.1017/9781009157964.005, 2019.
Meredith, M. P., Schofield, O., Newman, L., Urban, E., and Sparrow, M.: The vision for a Southern Ocean Observing System, Curr. Opin. Environ. Sustain., 5, 306–313, https://doi.org/10.1016/j.cosust.2013.03.002, 2013.
Pappas, N., Roux, S., Hölzer, M., Lamkiewicz, K., Mock, F., Marz, M.,
and Dutilh B.E.: Virus Bioinformatics, Ref. Module Life Sci., 1, 124–132,
https://doi.org/10.1016/B978-0-12-814515-9.00034-5, 2020.
Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., Iudicone, D., Karsenti, E., Speich, S., Troublé, R., Dimier, C., and Searson, S.: Open science resources for the
discovery and analysis of Tara Oceans data, Sci. Data, 2, 150023,
https://doi.org/10.1038/sdata.2015.23, 2015.
Pörtner, H. O., Scholes, R. J., Arneth, A., Barnes, D. K. A., Burrows, M. T.,
Diamond, S. E., Duarte, C. M., Kiessling, W., Leadley, P., Managi, S., McElwee, P., Midgley, G., Ngo, H. T., Obura, D., Pascual, U., Sankaran, M., Shin, Y. J., and Val, A. L.: Overcoming the coupled climate and
biodiversity crises and their societal impacts, Science, 380, eabl4881, https://doi.org/10.1126/science.abl4881, 2023.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvarinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed
nearly four times faster than the globe since 1979, Comm. Earth Environ., 3,
168, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Roemmich, D. and the ARGO Steering Team: ARGO: the challenge of continuing 10 years of progress, Oceanogr., 22, 46–55, https://doi.org/10.2307/24860989, 2009.
Ropert-Coudert, Y., Kato, A., Wilson, R. P., and Cannell, B.: Foraging
strategies and prey encounter rate of free-ranging Little Penguins, Mar.
Biol., 149, 139–148, https://doi.org/10.1007/s00227-005-0188-x, 2006.
Royo-Llonch, M., Sánchez, P., Ruiz-González, C., Salazar, G., Pedrós-Alió, C., Sebastián, M., Labadie, K., Paoli, L. M., Ibarbalz, F., Zinger, L., Churcheward, B., Tara Oceans Coordinators, Chaffron, S., Eveillard, D., Karsenti, E., Sunagawa, S., Wincker, P., Karp-Boss, L., Bowler, C., and Acinas, S. G.: Compendium
of 530 metagenome-assembled bacterial and archaeal genomes from the polar
Arctic Ocean, Nat. Microbio., 6, 1561–1574,
https://doi.org/10.1038/s41564-021-00979-9, 2021.
Sakamoto, K. Q., Sato, K., Ishizuka, M., Watanuki, Y., Takahashi, A., Daunt,
F., and Wanless, S.: Can ethograms be automatically generated using body
acceleration data from free-ranging birds?, PLoS ONE, 4, e5379,
https://doi.org/10.1371/journal.pone.0005379, 2009.
Salzberg, S. L.: Next-generation genome annotation: we still struggle to get
it right. Genome Biol., 20, 92, https://doi.org/10.1186/s13059-019-1715-2,
2019.
Schneider, M. V. and Orchard, S.: Omics Technologies, Data and
Bioinformatics Principles, in: Bioinformatics for Omics Data, Methods in
Molecular Biology, edited by: Mayer, B., Springer, Berlin, Germany, 3–30,
https://doi.org/10.1007/978-1-61779-027-0_1, 2011.
Siegel, V.: Biology and ecology of Antarctic krill, Springer, Cham,
Switzerland, ISBN 978-3-319-29277-9, 2016.
Smith, B., Fricker, H.A., Gardner, A.S., Medley, B., Nilsson, J., Paolo,
F.S., Holschuh, N., Adusumilli, S., Brunt, K., and Zwally, H. J.:
Pervasive ice sheet mass loss reflects competing ocean and atmosphere
processes, Science, 368, 1239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Snijders, C., Matzat, U., and Reips, U.-D.: “Big Data”: Big Gaps of
Knowledge in the Field of Internet Science. Inter. J. Internet Sci., 7, 1–5, 2012.
Steen, A. D., Kusch, S., Abdulla, H. A., Cakić, N., Coffinet, S.,
Dittmar, T., Fulton, J. M., Galy, V., Hinrichs, K.-U., Ingalls, A. E., Koch, B. P., Kujawinski, E., Liu, Z., Osterholz, H., Rush, D., Seidel, M., Sepúlveda, J., and Wakeham, S. G.: Analytical and Computational Advances, Opportunities,
and Challenges in Marine Organic Biogeochemistry in an Era of “Omics”,
Front. Mar. Sci., 7, 718, https://doi.org/10.3389/fmars.2020.00718, 2020.
Stow, C. A., Webster, K. E., Wagner, T., Lottig, N., Soranno, P. A., and Cha,
Y. K.: Small values in big data: The continuing need for appropriate
metadata, Ecol. Inform., 45, 26–30,
https://doi.org/10.1016/j.ecoinf.2018.03.002, 2018.
Sunagawa, S., Acinas, S. G., Bork, P., Bowler, C., Tara Oceans Coordinators, Eveillard, D., Gorsky, G., Guidi, L., Iudicone, D., Karsenti, E., Lombard, F., Ogata, H., Pesant, S., Sullivan, M. B., Wincker, P., and de Vargas, C.: Tara Oceans: towards global
ocean ecosystems biology, Nat. Rev. Microb., 18, 428–445,
https://doi.org/10.1038/s41579-020-0364-5, 2020.
Sutton, G. J., Bost, C. A., Kouzani, A. Z., Adams, S. D., Mitchell, K., and
Arnould, J. P.: Fine-scale foraging effort and efficiency of Macaroni
penguins is influenced by prey type, patch density and temporal dynamics,
Mar. Biol., 168, 1–16, https://doi.org/10.1007/s00227-020-03811-w, 2021.
Tanhua, T., Pouliquen, S., Hausman, J., O`Brien, K., Bricher, P., de Bruin,
T., Buck, J. H., Burger, E. F., Carval, T., Casey, K. S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D., Muelbert, J. H., Novellino, A., Pfeil, B., Pulsifer, P. L., Van de Putte, A., Robinson, E., Schaap, D., Smirnov, A., Smith, N., Snowden, D., Spears, T., Stall, S., Tacoma, M., Thijsse, P., Tronstad, S., Vandenberghe, T., Wengren, M., Wyborn, L., and Zhao, Z.: Ocean FAIR Data Services, Front. Mar. Sci., 6, 440,
https://doi.org/10.3389/fmars.2019.00440, 2019.
Valletta, J., Torney, C., Kings, M., Thornton, A., and Madden, J.: Applications of machine learning in animal behaviour studies, Animal Behav., 124, 203–220, https://doi.org/10.1016/j.anbehav.2016.12.005, 2017.
Vernette, C., Lecubin, J., Sanchez, P., Tara Oceans Coordinators, Sunagawa, S., Delmont, T. O., Acinas, S. G., Pelletier, E., Hingamp, P., and Lescot, M.: The Ocean Gene Atlas
v2.0: online exploration of the biogeography and phylogeny of plankton
genes, Nucleic Acids Res., 50, 516–526, https://doi.org/10.1093/nar/gkac420,
2022.
Verwega, M. T., Trahms, C., Antia, A. N., Dickhaus, T., Prigge, E., Prinzler,
M. H. U., Renz, M., Schartau, M., Slawig, T., Somes, C. J., and Biastoch, A.:
Perspectives on Marine Data Science as a Blueprint for Emerging Data Science
Disciplines, Front. Mar. Sci., 8, https://doi.org/10.3389/fmars.2021.678404,
2021.
Wille, J. D., Favier, V., Jourdain, N. C., Kittel, C., Turton, J. V., Agosta, C., Gorodetskaya, I. V., Picard, G., Codron, F., Leroy-Dos Santos, C., Amory, C., Fettweis, X., Blanchet, J., Jomelli, V., and Berchet, A.: Intense atmospheric rivers
can weaken ice shelf stability at the Antarctic Peninsula, Comm. Earth
Environ., 3, 90, https://doi.org/10.1038/s43247-022-00422-9, 2022.
Yandell, M. and Ence, D.: A beginner's guide to eukaryotic genome
annotation, Nat. Rev. Genet., 13, 329–342, https://doi.org/10.1038/nrg3174, 2012.
Yang, C. and Huang, Q.: Spatial Cloud Computing, a Practical Approach, CRC
Press, 357 pp., ISBN 9781138075559, 2013.
Short summary
There are many approaches to better understanding Antarctic processes that generate very large data sets (
Antarctic big data). For these large data sets there is a pressing need for improved data acquisition, curation, integration, service, and application to support fundamental scientific research, and this article describes and evaluates the current status of big data in various Antarctic scientific disciplines, identifies current gaps, and provides solutions to fill these gaps.
There are many approaches to better understanding Antarctic processes that generate very large...