Articles | Volume 90, issue 2
https://doi.org/10.5194/polf-90-81-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/polf-90-81-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Money makes our world go round – funding landscape for polar early-career scientists in Germany
German National Committee of the Association of Polar Early Career Scientists (APECS Germany), Germany
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Erik Loebel
German National Committee of the Association of Polar Early Career Scientists (APECS Germany), Germany
Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany
Alexandra M. Zuhr
German National Committee of the Association of Polar Early Career Scientists (APECS Germany), Germany
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A45, 14473 Potsdam, Germany
Related authors
Lena Nicola
Polarforschung, 91, 105–108, https://doi.org/10.5194/polf-91-105-2023, https://doi.org/10.5194/polf-91-105-2023, 2023
Short summary
Short summary
There are different ways to study the icy continent of Antarctica. One way to understand various processes in Antarctica or to investigate the future of the ice sheet under climate change, is to build a computer model. Several steps are needed to represent how ice flows inside a model. These include for example the derivation of the physical equations, the construction of a coordinate system and the choice of boundary conditions.
Lena Nicola, Ronja Reese, Moritz Kreuzer, Torsten Albrecht, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2583, https://doi.org/10.5194/egusphere-2023-2583, 2023
Short summary
Short summary
We identify potential oceanic gateways to Antarctic grounding lines based on high-resolution bathymetry data and examine the effect of critical access depths on basal melt rates. These gateways manifest the deepest topographic features that connect the deeper open ocean and the ice-shelf cavity. We detect 'prominent' oceanic gateways in some Antarctic regions and estimate an upper limit of melt rate changes in case all warm water masses gain access to the cavities.
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2737, https://doi.org/10.5194/egusphere-2023-2737, 2023
Short summary
Short summary
The study investigates how changing sea levels around Antarctica can potentially affect the floating ice shelves. It utilizes numerical models for both the Antarctic Ice Sheet and the solid Earth, investigating features like troughs and sills that control the flow of ocean water onto the continental shelf. The research finds that variations in sea level alone can significantly impact the melting rates of ice shelves.
Lena Nicola, Dirk Notz, and Ricarda Winkelmann
The Cryosphere, 17, 2563–2583, https://doi.org/10.5194/tc-17-2563-2023, https://doi.org/10.5194/tc-17-2563-2023, 2023
Short summary
Short summary
For future sea-level projections, approximating Antarctic precipitation increases through temperature-scaling approaches will remain important, as coupled ice-sheet simulations with regional climate models remain computationally expensive, especially on multi-centennial timescales. We here revisit the relationship between Antarctic temperature and precipitation using different scaling approaches, identifying and explaining regional differences.
Erik Loebel, Luisa von Albedyll, Rey Mourot, and Lena Nicola
Polarforschung, 90, 29–32, https://doi.org/10.5194/polf-90-29-2022, https://doi.org/10.5194/polf-90-29-2022, 2022
Short summary
Short summary
On the occasion of Polar Week in March 2021 and with the motto
let’s talk fieldwork, APECS Germany hosted an online polar fieldwork panel discussion. Joined by a group of six early-career polar scientists and an audience of over 140 participants, the event provided an informal environment for debating experiences, issues and ideas. This contribution summarizes the event, sharing practical knowledge about polar fieldwork and fieldwork opportunities for early-career scientists.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024, https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary
Short summary
We present a new approach (AWI-ICENet1), based on a deep convolutional neural network, for analysing satellite radar altimeter measurements to accurately determine the surface height of ice sheets. Surface height estimates obtained with AWI-ICENet1 (along with related products, such as ice sheet height change and volume change) show improved and unbiased results compared to other products. This is important for the long-term monitoring of ice sheet mass loss and its impact on sea level rise.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024, https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Short summary
Comprehensive datasets of calving-front changes are essential for studying and modeling outlet glaciers. Current records are limited in temporal resolution due to manual delineation. We use deep learning to automatically delineate calving fronts for 23 glaciers in Greenland. Resulting time series resolve long-term, seasonal, and subseasonal patterns. We discuss the implications of our results and provide the cryosphere community with a data product and an implementation of our processing system.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-535, https://doi.org/10.5194/essd-2023-535, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constrain ice modelling. We apply a deep learning framework on multispectral Landsat imagery to create a calving front record for 19 key outlet glaciers of the Antarctic Peninsula. The resulting data product includes 2064 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Lena Nicola
Polarforschung, 91, 105–108, https://doi.org/10.5194/polf-91-105-2023, https://doi.org/10.5194/polf-91-105-2023, 2023
Short summary
Short summary
There are different ways to study the icy continent of Antarctica. One way to understand various processes in Antarctica or to investigate the future of the ice sheet under climate change, is to build a computer model. Several steps are needed to represent how ice flows inside a model. These include for example the derivation of the physical equations, the construction of a coordinate system and the choice of boundary conditions.
Lena Nicola, Ronja Reese, Moritz Kreuzer, Torsten Albrecht, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2583, https://doi.org/10.5194/egusphere-2023-2583, 2023
Short summary
Short summary
We identify potential oceanic gateways to Antarctic grounding lines based on high-resolution bathymetry data and examine the effect of critical access depths on basal melt rates. These gateways manifest the deepest topographic features that connect the deeper open ocean and the ice-shelf cavity. We detect 'prominent' oceanic gateways in some Antarctic regions and estimate an upper limit of melt rate changes in case all warm water masses gain access to the cavities.
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2737, https://doi.org/10.5194/egusphere-2023-2737, 2023
Short summary
Short summary
The study investigates how changing sea levels around Antarctica can potentially affect the floating ice shelves. It utilizes numerical models for both the Antarctic Ice Sheet and the solid Earth, investigating features like troughs and sills that control the flow of ocean water onto the continental shelf. The research finds that variations in sea level alone can significantly impact the melting rates of ice shelves.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Angelika Humbert, Veit Helm, Niklas Neckel, Ole Zeising, Martin Rückamp, Shfaqat Abbas Khan, Erik Loebel, Jörg Brauchle, Karsten Stebner, Dietmar Gross, Rabea Sondershaus, and Ralf Müller
The Cryosphere, 17, 2851–2870, https://doi.org/10.5194/tc-17-2851-2023, https://doi.org/10.5194/tc-17-2851-2023, 2023
Short summary
Short summary
The largest floating glacier mass in Greenland, the 79° N Glacier, is showing signs of instability. We investigate how crack formation at the glacier's calving front has changed over the last decades by using satellite imagery and airborne data. The calving front is about to lose contact to stabilizing ice islands. Simulations show that the glacier will accelerate as a result of this, leading to an increase in ice discharge of more than 5.1 % if its calving front retreats by 46 %.
Lena Nicola, Dirk Notz, and Ricarda Winkelmann
The Cryosphere, 17, 2563–2583, https://doi.org/10.5194/tc-17-2563-2023, https://doi.org/10.5194/tc-17-2563-2023, 2023
Short summary
Short summary
For future sea-level projections, approximating Antarctic precipitation increases through temperature-scaling approaches will remain important, as coupled ice-sheet simulations with regional climate models remain computationally expensive, especially on multi-centennial timescales. We here revisit the relationship between Antarctic temperature and precipitation using different scaling approaches, identifying and explaining regional differences.
Romilly Harris Stuart, Anne-Katrine Faber, Sonja Wahl, Maria Hörhold, Sepp Kipfstuhl, Kristian Vasskog, Melanie Behrens, Alexandra M. Zuhr, and Hans Christian Steen-Larsen
The Cryosphere, 17, 1185–1204, https://doi.org/10.5194/tc-17-1185-2023, https://doi.org/10.5194/tc-17-1185-2023, 2023
Short summary
Short summary
This empirical study uses continuous daily measurements from the Greenland Ice Sheet to document changes in surface snow properties. Consistent changes in snow isotopic composition are observed in the absence of deposition due to surface processes, indicating the isotopic signal of deposited precipitation is not always preserved. Our observations have potential implications for the interpretation of water isotopes in ice cores – historically assumed to reflect isotopic composition at deposition.
Erik Loebel, Luisa von Albedyll, Rey Mourot, and Lena Nicola
Polarforschung, 90, 29–32, https://doi.org/10.5194/polf-90-29-2022, https://doi.org/10.5194/polf-90-29-2022, 2022
Short summary
Short summary
On the occasion of Polar Week in March 2021 and with the motto
let’s talk fieldwork, APECS Germany hosted an online polar fieldwork panel discussion. Joined by a group of six early-career polar scientists and an audience of over 140 participants, the event provided an informal environment for debating experiences, issues and ideas. This contribution summarizes the event, sharing practical knowledge about polar fieldwork and fieldwork opportunities for early-career scientists.
Abigail G. Hughes, Sonja Wahl, Tyler R. Jones, Alexandra Zuhr, Maria Hörhold, James W. C. White, and Hans Christian Steen-Larsen
The Cryosphere, 15, 4949–4974, https://doi.org/10.5194/tc-15-4949-2021, https://doi.org/10.5194/tc-15-4949-2021, 2021
Short summary
Short summary
Water isotope records in Greenland and Antarctic ice cores are a valuable proxy for paleoclimate reconstruction and are traditionally thought to primarily reflect precipitation input. However,
post-depositional processes are hypothesized to contribute to the isotope climate signal. In this study we use laboratory experiments, field experiments, and modeling to show that sublimation and vapor–snow isotope exchange can rapidly influence the isotopic composition of the snowpack.
Alexandra M. Zuhr, Thomas Münch, Hans Christian Steen-Larsen, Maria Hörhold, and Thomas Laepple
The Cryosphere, 15, 4873–4900, https://doi.org/10.5194/tc-15-4873-2021, https://doi.org/10.5194/tc-15-4873-2021, 2021
Short summary
Short summary
Firn and ice cores are used to infer past temperatures. However, the imprint of the climatic signal in stable water isotopes is influenced by depositional modifications. We present and use a photogrammetry structure-from-motion approach and find variability in the amount, the timing, and the location of snowfall. Depositional modifications of the surface are observed, leading to mixing of snow from different snowfall events and spatial locations and thus creating noise in the proxy record.
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary
Short summary
Gravity wave (GW) activity in the UMLT in the period range 6-480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes.
GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.
Related subject area
Outreach and knowledge transfer
Tagungsbericht: Technischer Fortschritt und dessen Einfluss auf die Polarforschung
Zum 50. Todestag von Fritz Loewe (1895–1974)
Polarfuchs (Kolumne): Die Antarktis im Computer – wie funktionieren Computermodelle?
Insights into German polar research during POLARSTUNDE
“Wissenschaft fürs Wohnzimmer” – 2 years of weekly interactive, scientific livestreams on YouTube
Let's talk fieldwork: early-career scientists sharing practical knowledge about polar fieldwork
Glaciers are for girls: the inaugural expedition of Girls on Ice Austria succeeded in empowering nine young women in August 2021
Laura Löslein and Johanna Strobel
Polarforschung, 92, 27–31, https://doi.org/10.5194/polf-92-27-2024, https://doi.org/10.5194/polf-92-27-2024, 2024
Short summary
Short summary
From 22 to 23 September 2023, a conference of the History of Polar Research Working Group of the German Society for Polar Research took place at the 'Hugo Junkers' Museum of Technology in Dessau to mark the 100th anniversary of the Junkers aid expedition to Svalbard. The contents of the conference are summarised in this report. Additionally, the contents are reviewed on the basis of modern polar literature and a plea is made for greater interdisciplinarity in polar science.
Cornelia Lüdecke
Polarforschung, 92, 15–24, https://doi.org/10.5194/polf-92-15-2024, https://doi.org/10.5194/polf-92-15-2024, 2024
Short summary
Short summary
Fritz Loewe beschreibt in seinem letzten nicht mehr gehaltenen Vortrag, wie er als begeisterter Bergsteiger und Meteorologe begann, Gletscher zu erforschen. Wichtige Stationen waren das Jungfraujoch, die Teilnahme an Wegeners Grönlandexpeditionen (1929, 1930-31), die Überwinterung auf der französischen Antarktisstation (1951-52), die Nanga Parbat Region (1958), sowie der mehrfache Besuch Grönlands in den 1960er Jahren. Eine einleitende Biographie liefert den Hintergrund für Loewes Aktivitäten.
Lena Nicola
Polarforschung, 91, 105–108, https://doi.org/10.5194/polf-91-105-2023, https://doi.org/10.5194/polf-91-105-2023, 2023
Short summary
Short summary
There are different ways to study the icy continent of Antarctica. One way to understand various processes in Antarctica or to investigate the future of the ice sheet under climate change, is to build a computer model. Several steps are needed to represent how ice flows inside a model. These include for example the derivation of the physical equations, the construction of a coordinate system and the choice of boundary conditions.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Nicolas Stoll, Matthias Wietz, Stephan Juricke, Franziska Pausch, Corina Peter, Miriam Seifert, Jana C. Massing, Moritz Zeising, Rebecca A. McPherson, Melissa Käß, and Björn Suckow
Polarforschung, 91, 31–43, https://doi.org/10.5194/polf-91-31-2023, https://doi.org/10.5194/polf-91-31-2023, 2023
Short summary
Short summary
Global crises, such as climate change and the COVID-19 pandemic, show the importance of communicating science to the public. We introduce the YouTube channel "Wissenschaft fürs Wohnzimmer", which livestreams presentations on climate-related topics weekly and is accessible to all. The project encourages interaction between scientists and the public and has been running successfully for over 2 years. We present the concept, what we have learnt, and the challenges after 100 streamed episodes.
Erik Loebel, Luisa von Albedyll, Rey Mourot, and Lena Nicola
Polarforschung, 90, 29–32, https://doi.org/10.5194/polf-90-29-2022, https://doi.org/10.5194/polf-90-29-2022, 2022
Short summary
Short summary
On the occasion of Polar Week in March 2021 and with the motto
let’s talk fieldwork, APECS Germany hosted an online polar fieldwork panel discussion. Joined by a group of six early-career polar scientists and an audience of over 140 participants, the event provided an informal environment for debating experiences, issues and ideas. This contribution summarizes the event, sharing practical knowledge about polar fieldwork and fieldwork opportunities for early-career scientists.
Emma B. Lodes
Polarforschung, 90, 1–6, https://doi.org/10.5194/polf-90-1-2022, https://doi.org/10.5194/polf-90-1-2022, 2022
Short summary
Short summary
Girls on Ice Austria is a new all-female organization that encourages young women to stretch themselves during a week-long expedition to a glacier in which they learn about science, art, and mountaineering. Their first expedition was successfully completed in August 2021. Girls on Ice (part of Inspiring Girls Expeditions) encourages girls to pursue traditionally male-dominated paths such as glaciology or mountaineering and to gain self-confidence and inspiration.
Cited articles
APECS International: Funding Database,
https://apecs.is/career-resources/funding-database.html
(last access: 26 September 2022), 2022. a
Bradley, A., Höfer, J., Savaglia, V., and Eayrs, C.: Survey on early career travel support shows geographic, career stage, and indigenous status inequality in access to polar science events, Adv. Geosci., 53, 73–85, https://doi.org/10.5194/adgeo-53-73-2020, 2020. a
Brasier, M. J., McCormack, S., Bax, N., Caccavo, J. A., Cavan, E., Ericson,
J. A., Figuerola, B., Hancock, A., Halfter, S., Hellessey, N., and Höfer, J.:
Overcoming the obstacles faced by early career researchers in marine science:
lessons from the marine ecosystem assessment for the Southern Ocean,
Front. Mar. Sci., 7, 692, https://doi.org/10.3389/fmars.2020.00692, 2020. a
DAAD: DAAD Scholarships – an overview,
https://www.daad.de/en/study-and-research-in-germany/scholarships/daad-scholarships/
(last access: 20 September 2022), 2022. a
EGU: Meeting description SC2.3: How to find funding,
https://meetingorganizer.copernicus.org/EGU22/session/43465/
(last access: 20 September 2022), 2022. a
Figuerola, B., Valiente, N., Barbosa, A., Brasier, M. J., Colominas-Ciuró,
R., Convey, P., Liggett, D., Fernández-Martínez, M. A., Gonzalez,
S., Griffiths, H. J., and Jawak, S. D.: Shifting perspectives in polar research: Global
lessons on the barriers and drivers for securing academic careers in natural
sciences, Front. Ecol. Evol.,9, 777009, https://doi.org/10.3389/fevo.2021.777009, 2021. a
Forrester, N.: Mental health of graduate students sorely overlooked,
Nature, 595, 135–137, 2021. a
Horta, H., Cattaneo, M., and Meoli, M.: PhD funding as a determinant of PhD and
career research performance, Stud. Higher Educ., 43, 542–570, 2018. a
Kaiser, P.: Forschung und Geld: Wie frei ist die Wissenschaft?, MDR,
https://www.mdr.de/wissen/wer-zahlt-forschung-und-wie-zahlt-forschung-zurueck100.html (last access: 15 October 2022),
2021. a
Loebel, E., von Albedyll, L., Mourot, R., and Nicola, L.: Let's talk fieldwork: early-career scientists sharing practical knowledge about polar fieldwork, Polarforschung, 90, 29–32, https://doi.org/10.5194/polf-90-29-2022, 2022. a
Nash, M., Nielsen, H. E., Shaw, J., King, M., Lea, M.-A., and Bax, N.:
“Antarctica just has this hero factor...”: Gendered barriers to
Australian Antarctic research and remote fieldwork, PLoS One, 14, e0209983, https://doi.org/10.1371/journal.pone.0209983,
2019. a
Schiermeier, Q.: Oil cost hits ship studies, Nature, 454, 372–373, 2008. a
Sohn, E.: Secrets to writing a winning grant, Nature, 577, 133–135,
2020. a
The Research Council of Norway: Arctic Field Grant (AFG) – Funding for
Fieldwork in Svalbard,
https://www.forskningsradet.no/en/call-for-proposals/2022/arctic-field-grant/
(last access: 26 September 2022), 2022. a
Wao, H. O.: Time to the doctorate: Multilevel discrete-time hazard analysis,
Educ. Assess. Eval. Acc., 22, 227–247, 2010. a
Wright, T. and Cochrane, R.: Factors influencing successful submission of PhD
theses, Stud. Higher Educ., 25, 181–195, 2000. a
Short summary
To facilitate the search for funding within Germany and internationally, APECS Germany has started to host a list of grant, fellowship and other funding opportunities at https://apecs-germany.de/funding/. In our article, we present our new website while describing the different stages of the quest to find funding and to highlight best practices for, for example, writing grant proposals.
To facilitate the search for funding within Germany and internationally, APECS Germany has...