Articles | Volume 90, issue 2
https://doi.org/10.5194/polf-90-65-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/polf-90-65-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of Antarctic overwintering teams and their significance for German polar research
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Physics of Ice Climate and Earth, Niels Bohr Institute, University
of Copenhagen, Copenhagen, Denmark
Alfons Eckstaller
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Tim Heitland
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Thomas Schaefer
Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
Jölund Asseng
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Related authors
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Vjeran Višnjević, Reinhard Drews, Clemens Schannwell, Inka Koch, Steven Franke, Daniela Jansen, and Olaf Eisen
The Cryosphere, 16, 4763–4777, https://doi.org/10.5194/tc-16-4763-2022, https://doi.org/10.5194/tc-16-4763-2022, 2022
Short summary
Short summary
We present a simple way to model the internal layers of an ice shelf and apply the method to the Roi Baudouin Ice Shelf in East Antarctica. Modeled results are compared to measurements obtained by radar. We distinguish between ice directly formed on the shelf and ice transported from the ice sheet, and we map the spatial changes in the volume of the locally accumulated ice. In this context, we discuss the sensitivity of the ice shelf to future changes in surface accumulation and basal melt.
Alfons Eckstaller, Jölund Asseng, Erich Lippmann, and Steven Franke
Geosci. Instrum. Method. Data Syst., 11, 235–245, https://doi.org/10.5194/gi-11-235-2022, https://doi.org/10.5194/gi-11-235-2022, 2022
Short summary
Short summary
We present a mobile and self-sufficient seismometer station concept for operation in polar regions. The energy supply can be adapted as required using the modular cascading of battery boxes, wind generators, solar cells, or backup batteries, which enables optimum use of limited resources. Our system concept is not limited to the applications using seismological stations. It is a suitable system for managing the power supply of all types of self-sufficient measuring systems in polar regions.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Tamara Annina Gerber, Christine Schøtt Hvidberg, Sune Olander Rasmussen, Steven Franke, Giulia Sinnl, Aslak Grinsted, Daniela Jansen, and Dorthe Dahl-Jensen
The Cryosphere, 15, 3655–3679, https://doi.org/10.5194/tc-15-3655-2021, https://doi.org/10.5194/tc-15-3655-2021, 2021
Short summary
Short summary
We simulate the ice flow in the onset region of the Northeast Greenland Ice Stream to determine the source area and past accumulation rates of ice found in the EastGRIP ice core. This information is required to correct for bias in ice-core records introduced by the upstream flow effects. Our results reveal that the increasing accumulation rate with increasing upstream distance is predominantly responsible for the constant annual layer thicknesses observed in the upper 900 m of the ice core.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Revised manuscript has not been submitted
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Vjeran Višnjević, Reinhard Drews, Clemens Schannwell, Inka Koch, Steven Franke, Daniela Jansen, and Olaf Eisen
The Cryosphere, 16, 4763–4777, https://doi.org/10.5194/tc-16-4763-2022, https://doi.org/10.5194/tc-16-4763-2022, 2022
Short summary
Short summary
We present a simple way to model the internal layers of an ice shelf and apply the method to the Roi Baudouin Ice Shelf in East Antarctica. Modeled results are compared to measurements obtained by radar. We distinguish between ice directly formed on the shelf and ice transported from the ice sheet, and we map the spatial changes in the volume of the locally accumulated ice. In this context, we discuss the sensitivity of the ice shelf to future changes in surface accumulation and basal melt.
Alfons Eckstaller, Jölund Asseng, Erich Lippmann, and Steven Franke
Geosci. Instrum. Method. Data Syst., 11, 235–245, https://doi.org/10.5194/gi-11-235-2022, https://doi.org/10.5194/gi-11-235-2022, 2022
Short summary
Short summary
We present a mobile and self-sufficient seismometer station concept for operation in polar regions. The energy supply can be adapted as required using the modular cascading of battery boxes, wind generators, solar cells, or backup batteries, which enables optimum use of limited resources. Our system concept is not limited to the applications using seismological stations. It is a suitable system for managing the power supply of all types of self-sufficient measuring systems in polar regions.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
Short summary
Feedbacks of acidity and atmospheric multiphase chemistry in deliquesced particles and clouds are crucial for the tropospheric composition, depositions, climate, and human health. This review synthesizes the current scientific knowledge on these feedbacks using both inorganic and organic aqueous-phase chemistry. Finally, this review outlines atmospheric implications and highlights the need for future investigations with respect to reducing emissions of key acid precursors in a changing world.
Tamara Annina Gerber, Christine Schøtt Hvidberg, Sune Olander Rasmussen, Steven Franke, Giulia Sinnl, Aslak Grinsted, Daniela Jansen, and Dorthe Dahl-Jensen
The Cryosphere, 15, 3655–3679, https://doi.org/10.5194/tc-15-3655-2021, https://doi.org/10.5194/tc-15-3655-2021, 2021
Short summary
Short summary
We simulate the ice flow in the onset region of the Northeast Greenland Ice Stream to determine the source area and past accumulation rates of ice found in the EastGRIP ice core. This information is required to correct for bias in ice-core records introduced by the upstream flow effects. Our results reveal that the increasing accumulation rate with increasing upstream distance is predominantly responsible for the constant annual layer thicknesses observed in the upper 900 m of the ice core.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
R. Weller, I. Levin, D. Schmithüsen, M. Nachbar, J. Asseng, and D. Wagenbach
Atmos. Chem. Phys., 14, 3843–3853, https://doi.org/10.5194/acp-14-3843-2014, https://doi.org/10.5194/acp-14-3843-2014, 2014
Cited articles
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung: Neumayer III and Kohnen Station in Antarctica operated by the Alfred Wegener Institute. Journal of Large-Scale Research Facilities, 2, A85, https://doi.org/10.17815/jlsrf-2-152, 2016.
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A. A., Kanao, M., Li, Y.,
Maggi, A., and Lévêque, J.-J.: S-velocity model and inferred Moho
topography beneath the Antarctic Plate from Rayleigh waves, J. Geophys.
Res.-Sol. Ea., 120, 359–383, https://doi.org/10.1002/2014JB011332, 2015.
Arndt, S., Hoppmann, M., Schmithüsen, H., Fraser, A. D., and Nicolaus, M.: Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica, The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, 2020.
Bayer, B., Geissler, W. H., Eckstaller, A., and Jokat, W.: Seismic imaging
of the crust beneath Dronning Maud Land, East Antarctica, Geophys.
J. Int., 178, 860–876,
https://doi.org/10.1111/j.1365-246X.2009.04196.x, 2009.
Bloxham, J., Zatman, S., and Dumberry, M.: The origin of geomagnetic jerks,
Nature, 420, 65–68, https://doi.org/10.1038/nature01134, 2002.
Boebel, O., Kindermann, L., Klinck, H., Bornemann, H., Plötz, J.,
Steinhage, D., Riedel, S., and Burkhardt, E.: Real-time underwater sounds
from the Southern Ocean, Eos Trans. AGU, 87, 361–361, 2006.
Bormann, P. and Fritzsche, D.: The Schirmacher Oasis, Queen Maud Land, East
Antarctica, and its surroundings, Petermann. Geogr. Mitt.
Ergänzungsheft, 289, 448 pp., 1995.
Burns, R.: Women in Antarctica: From Companions to Professionals, in:
Riffenburgh, edited by: Beau, R., Encyclopedia of the Antarctic, vol. 1.
Routledge, New York, ISBN 9780415970242, 2007.
Christie, D. R. and Campus, P.: The IMS Infrasound Network: Design and
Establishment of Infrasound Stations, in: Infrasound Monitoring for Atmospheric Studies, edited by: Le Pichon, A., Blanc, E., and
Hauchecorne, A.,
Springer, Dordrecht,
https://doi.org/10.1007/978-1-4020-9508-5_2, 2010.
Christmann, B.: Georg von Neumayer 1826–1909, Polarforschung, 46,
121–124, https://doi.org/10.2312/polarforschung.46.2.121, 1976.
CTBT Annual Report: CTBT Annual Report, https://www.ctbto.org/publications/annual-reports/ (last access: 2 January 2022), 2020.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018.
Eckstaller, A., Müller, C., Ceranna, L., and Hartmann, G.: The
Geophysics Observatory at Neumayer Stations (GvN and NM-II) Antarctica,
Polarforschung, 76, 3–24,
https://doi.org/10.2312/polarforschung.76.1-2.3, 2007.
Eckstaller, A., Asseng, J., Lippmann, E., and Franke, S.: Towards a self-sufficient mobile broadband seismological recording system for year-round operation in Antarctica, Geosci. Instrum. Method. Data Syst., 11, 235–245, https://doi.org/10.5194/gi-11-235-2022, 2022.
Eisermann, H., Eagles, G., Ruppel, A., Smith, E. C., and Jokat, W.:
Bathymetry beneath ice shelves of western Dronning Maud Land, East
Antarctica, and implications on ice shelf stability, Geophys. Res.
Lett., 47, e2019GL086724, https://doi.org/10.1029/2019GL086724, 2020.
EPICA Community Members: One-to-one coupling of glacial climate variability
in Greenland and Antarctica, Nature, 444, 195–198,
https://doi.org/10.1038/nature05301, 2006.
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal interaction, Nature, 315,
207–210, https://doi.org/10.1038/315207a0, 1985.
Fleischmann, K.: Zu den Kältepolen der Erde – 50 Jahre Deutsche
Polarforschung. 1. Auflage, Delius Klasing & Co. KG, Bielefeld, ISBN 3768816761, 2005.
Franke, S., H. Eisermann, W. Jokat, G. Eagles, J. Asseng, H. Miller, D.
Steinhage, V. Helm, O. Eisen, and D. Jansen,: Preserved landscapes
underneath the Antarctic Ice Sheet reveal the geomorphological history of
Jutulstraumen Basin, Earth Surf. Proc. Land., 46,
2728–2745, https://doi.org/10.1002/esp.5203, 2021.
Fromm, T., Eckstaller, A., and Asseng, J.: The AWI Network Antarctica – Alfred-Wegener Institute, Germany. In Summary of the Bulletin of the International Seismological Centre, July–December 2014, Volume 51, Issue II (pp. 26–34). International Seismological Centre, Zenodo,
https://doi.org/10.5281/zenodo.1156983, 2018.
Gaya-Piqué, L., Ravat, D., De Santis, A., and Torta, J.: New model
alternatives for improving the representation of the core magnetic field of
Antarctica, Antarctic Science, 18, 101–109.
https://doi.org/10.1017/S0954102006000095, 2006.
Gernandt, H.: Erlebnis Antarktis, Berlin 1984, 232–270, 1984.
Gernandt, H.: The vertical ozone distribution above the GDR-Research Base,
Antarctica in 1985, Geophys. Res. Lett., 14, 84–86,
https://doi.org/10.1029/GL014i001p00084, 1987.
Gernandt, H. and Huch, M.: Das Internationale Polarjahr 2007/08 – Folge 23:
Neumayer-Station III – Die neue Forschungsplattform in der Antarktis,
Polarforschung, 78, 133–136,
https://doi.org/10.2312/polarforschung.78.3.133, 2009.
Gernandt, H. and Meyer, H. J.: Antarctic Foundations. Towards Elevated
Platforms, in: ANTARCTIC RESOLUTION, edited by: Foscari, G., UNLESS, Lars
Müller Publishers, 504–506, ISBN 978-3-03778-640-6, 2021a.
Gernandt, H. and Meyer, H. J.: Containerization in Polar Architecture, in:
ANTARCTIC RESOLUTION, edited by: Foscari, G., UNLESS, Lars Müller
Publishers, 412–414, ISBN 978-3-03778-640-6, 2021b.
Gernandt, H., Plessing, P., Feister, U., Peters, G., and Pisch, H.: A
preliminary result of the ozone observation at GDR research base
(70.77∘ S, 11.85∘ E) from May to December 1985, Memoirs
of National Institute of Polar Research, Tokyo, 48, 256–271, 1987.
Gernandt, H., Glöde, P., Feister, U., Peters, G., and Thees, B.:
Vertical distributions of ozone in the lower stratosphere over Antarctica
and their relations to the spring depletion, Planet. Space Sci.,
37, 915–933, https://doi.org/10.1016/0032-0633(89)90047-0, 1989.
Gernandt, H., El Naggar, S., Janneck, J., Matz, T., and Drücker, C.:
From Georg Forster Station to Neumayer Station III – a Sustainable
Replacement at Atka Bay for Future, Polarforschung, 76, 59–85,
https://doi.org/10.2312/polarforschung.76.1-2.59, 2007.
GFZ German Research Centre for Geosciences: Geomagnetic Observatories,
Journal of Large-Scale Research Facilities, 2, A83,
https://doi.org/10.17815/jlsrf-2-136, 2016.
Hammer, C., Ohrnberger, M., and Schlindwein, V.: Pattern of cryospheric
seismic events observed at Ekström ice shelf, Antarctica, Geophys.
Res. Lett., 42, 3936–3943, https://doi.org/10.1002/2015GL064029,
2015.
Hempel, G.: Deutsche Meeresforschung in der Antarktis im Südsommer
1980/81, Polarforschung, 51, 227–237,
https://doi.org/10.2312/polarforschung.51.2.227, 1981.
Kertz, W.: Georg von Neumayer und die Polarforschung, Polarforschung, 53,
91–98, https://doi.org/10.2312/polarforschung.53.1.91, 1983.
Klügel, T., Höppner, K., Falk, R., Kühmstedt, E., Plötz, C.,
Reinhold, A., Rülke, A., Wojdziak, R., Balss, U., Diedrich, E., Eineder,
M., Henniger, H., Metzig, R., Steigenberger, P., Gisinger, C., Schuh, H.,
Böhm, J., Ojha, R., Kadler, M., Humbert, A., Braun, M., and Sun, J.: Earth
and Space Observation at the German Antarctic Receiving Station O'Higgins,
Polar Rec., 51, 590–610, https://doi.org/10.1017/s0032247414000540,
2014.
Kohlberg, E. and Janneck, J.: Georg von Neumayer Station (GvN) and Neumayer
Station II (NM-II) German Research Stations on Ekström Ice Shelf,
Antarctica, Polarforschung, 76, 47–57,
https://doi.org/10.2312/polarforschung.76.1-2.47, 2007.
König-Langlo, G. and Gernandt, H.: 20 Jahre Ozonsondierungen an den
deutschen Antarktisstationen Georg-Forster und Neumayer, Ozonbulletin, 113, 1–2,
https://hdl.handle.net/10013/epic.25892, 2006.
König-Langlo, G. and Gernandt, H.: Compilation of ozonesonde profiles from the Antarctic Georg-Forster-Station from 1985 to 1992, Earth Syst. Sci. Data, 1, 1–5, https://doi.org/10.5194/essd-1-1-2009, 2009.
König-Langlo, G. and Loose, B.: The Meteorological Observatory at
Neumayer Stations (GvN and NM-II) Antarctic, Polarforschung, 76, 25–38,
https://doi.org/10.2312/polarforschung.76.1-2.25, 2007.
König-Langlo, G., King, J. C., and Pettré, P.: Climatology of the
three coastal Antarctic stations Dumont d'Urville, Neumayer, and Halley,
J. Geophys. Res., 103, 10935–10946,
https://doi.org/10.1029/97JD00527, 1998.
Krause, R. A.: Zum hundertjährigen Jubiläum der Deutschen
Antarktischen Expedition unter der Leitung von Wilhelm Filchner, 1911–1912,
Polarforschung, 81, 103–126,
https://doi.org/10.2312/polarforschung.81.2.103, 2012.
Levin, I., Naegler, T., Kromer, B., Diehl, M., Francey, R., Gomez-Pelaez A.,
Steele, P., Wagenbach, D., Weller, R., and Worthy D.: Observations and
modelling of the global distribution and long-term trend of atmospheric
14CO2, Tellus B, 62, 26–46,
https://doi.org/10.1111/j.1600-0889.2009.00446.x, 2010.
Lüdecke, C.: In geheimer Mission zur Antarktis: die dritte Deutsche
Antarktische Expedition 1938/39 und der Plan einer territorialen Festsetzung zur Sicherung des Walfangs, Deutsches
Schiffahrtsarchiv, 26, 75–100, https://nbn-resolving.org/urn:nbn:de:0168-ssoar-52656-3 (last access: 2 January 2022), 2003.
Lüdecke, C.: Germans in the Antarctic, first edn., Springer Cham, ISBN 978-3-030-40924-1,
https://doi.org/10.1007/978-3-030-40924-1, 2021.
Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H.,
Headland, R., Herried, B., Katsumata, K., Le Brocq, A., Licht, K., Morgan,
F., Neff, P. D., Ritz, C., Scheinert, M., Tamura, T., Van de Putte, A., van
den Broeke, M., von Deschwanden, A., Deschamps-Berger, C., Van Liefferinge,
B., Tronstad, S., and Melvær, Y.: Quantarctica, an integrated mapping
environment for Antarctica, the Southern Ocean, and sub-Antarctic islands,
Environ. Modell. Softw., 140, 105015,
https://doi.org/10.1016/j.envsoft.2021.105015, 2021.
Mieth, M. and Jokat, W.: New aeromagnetic view of the geological fabric of
southern Dronning Maud Land and Coats Land, East Antarctica, Gondwana
Res., 25, 358–367, https://doi.org/10.1016/j.gr.2013.04.003, 2014.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S.,
Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M.
R. V. D., Ommen, T. D. V., Wessem, M. V., and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137,
https://doi.org/10.1038/s41561-019-0510-8, 2020.
Müller, C., Bayer, B., Eckstaller, A., and Miller, H.: Mantle flow in
the South Sandwich subduction environment from source-side shear wave
splitting, Geophys. Res. Lett., 35, L03301,
https://doi.org/10.1029/2007GL032411, 2008.
Neckel, N., Drews, R., Rack, W., and Steinhage, D.:. Basal melting at the
Ekström Ice Shelf, Antarctica, estimated from mass flux divergence,
Ann. Glaciol., 53, 294–302,
https://doi.org/10.3189/2012AoG60A167, 2012.
Neckel, N., Franke, S., Helm, V., Drews, R., and Jansen, D.: Evidence of
cascading subglacial water flow at Jutulstraumen Glacier (Antarctica)
derived from Sentinel-1 and ICESat-2 measurements, Geophys. Res.
Lett., 48, e2021GL094472, https://doi.org/10.1029/2021gl094472, 2021.
Nisbet, E.: Cinderella science, Nature, 450, 789–790,
https://doi.org/10.1038/450789a, 2007.
Oerter, H., Drücker, C., Kipfstuhl, S., and Wilhelms, F.: Kohnen station
– the drilling camp for the EPICA deep ice core in Dronning Maud Land,
Polarforschung, 78, 1–23,
https://doi.org/10.2312/polarforschung.78.1-2.1, 2009.
Paech, H.-J.: Die DDR Antarktisforschung – eine Retrospektive,
Polarforschung, 60, 197–218,
https://doi.org/10.2312/polarforschung.60.3.197, 1992.
Pappa, F., Ebbing, J., and Ferraccioli, F.: Moho depths of Antarctica:
Comparison of seismic, gravity, and isostatic results, Geochem.
Geophy. Geosy., 20, 1629–1645,
https://doi.org/10.1029/2018GC008111, 2019.
Piggott, W., Fuchs, V., and Laws, R.: The importance of the Antarctic in
atmospheric sciences, Philos. T. Roy. Soc.
B, 279, 275–285,
https://doi.org/10.1098/rstb.1977.0090, 1977.
Richter, S., Gerum, R. C., Schneider, W., Fabry, B., Le Bohec, C., Zitterbart, D. P.: A
remote-controlled observatory for behavioural and ecological research: A
case study on emperor penguins, Methods Ecol. Evol., 9,
1168–1178, https://doi.org/10.1111/2041-210X.12971, 2018.
Ritzwoller, M. H., Shapiro, N. M., Levshin, A. L., and Leahy, G. M.: Crustal
and upper mantle structure beneath Antarctica and surrounding oceans, J.
Geophys. Res., 106, 30645–30670, https://doi.org/10.1029/2001JB000179,
2001.
Schall, E. and van Opzeeland, I.: Calls produced by Ecotype C killer whales
(Orcinus orca) off the Eckstroem Ice Shelf, Antarctica, Aquatic Mamm., 43, 117–126, https://doi.org/10.1578/AM.43.2.2017.117, 2017.
Schannwell, C., Drews, R., Ehlers, T. A., Eisen, O., Mayer, C., Malinen, M., Smith, E. C., and Eisermann, H.: Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model, The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, 2020.
Smith, E. C., Hattermann, T., Kuhn, G., Gaedicke, C., Berger, S., Drews, R.,
Ehlers, T. A., Franke, D., Gromig, R., Hofstede, C., Lambrecht, A.,
Läufer, A., Mayer, C., Tiedemann, R., Wilhelms, F., and Eisen, O.:
Detailed seismic bathymetry beneath Ekström Ice Shelf, Antarctica:
Implications for glacial history and ice-ocean interaction, Geophys. Res.
Lett., 47, e2019GL086187, https://doi.org/10.1029/2019GL086187, 2020.
Sobiesiak, M. and Korhammer, S. (Eds.): Neun Forscherinnen im ewigen Eis,
Die erste Antarktis-Überwinterung eines Frauenteams,
Birkhäuser, Basel, https://doi.org/10.1007/978-3-0348-5609-6, 1994.
Solomon, S.: The Discovery of the Antarctic Ozone Hole, Nature, 575,
46–47, https://doi.org/10.1038/d41586-019-02837-5, 2019.
Stahn, A. C., Gunga, H. C., Kohlberg, E., Gallinat, J., Dinges, D. F., and
Kühn, S.: Brain Changes in Response to Long Antarctic Expeditions, New
Engl. J. Med., 381, 2273–2275,
https://doi.org/10.1056/nejmc1904905, 2019.
Steinach, M., Kohlberg, E., Maggioni, M. A., Mendt, S., Opatz, O., Stahn,
A., and Gunga, H. C.: Sleep Quality Changes during Overwintering at the
German Antarctic Stations Neumayer II and III: The Gender Factor, PLOS ONE,
11, e0150099, https://doi.org/10.1371/journal.pone.0150099, 2016.
Steinhage, D., Kipfstuhl, S., Nixdorf, U., and Miller, H.: Internal
structure of the ice sheet between Kohnen station and Dome Fuji, Antarctica,
revealed by airborne radio-echo sounding, Ann. Glaciol., 54, 163–167, https://doi.org/10.3189/2013aog64a113, 2013.
Van Opzeeland, I., Van Parijs, S., Kindermann, L., Burkhardt, E., and Boebel, O.: Calling
in the Cold: Pervasive Acoustic Presence of Humpback Whales (Megaptera
novaeangliae) in Antarctic Coastal Waters, PLoS ONE, 8, e73007,
https://doi.org/10.1371/journal.pone.0073007, 2013.
Weinhart, A. H., Freitag, J., Hörhold, M., Kipfstuhl, S., and Eisen, O.: Representative surface snow density on the East Antarctic Plateau, The Cryosphere, 14, 3663–3685, https://doi.org/10.5194/tc-14-3663-2020, 2020.
Weller, R., Jones, A. E., Wille, A., Jacobi, H.-W., McIntyre, H. P.,
Sturges, W. T., Huke, M., and Wagenbach, D.: Seasonality of reactive
nitrogen oxides (NOy) at Neumayer Station, Antarctica, J.
Geophys. Res., 107, 4673, https://doi.org/10.1029/2002JD002495, 2002.
Weller, R., Levin, I., Wagenbach, D., and Minikin, A.: The air chemistry
observatory at Neumayer Stations (GvN and NM-II) Antarctica, Polarforschung,
76, 39–46, https://doi.org/10.2312/polarforschung.76.1-2.39, 2007.
Weller, R., Wagenbach, D., Legrand, M., Elsässer, C., Tian-Kunze, X., and
König-Langlo, G.: Continuous 25-yr aerosol records at coastal Antarctica
– I: inter-annual variability of ionic compounds and links to climate
indices, Tellus B, 63, 901–919,
https://doi.org/10.1111/j.1600-0889.2011.00542.x, 2011.
Weller, R., Minikin, A., Petzold, A., Wagenbach, D., and König-Langlo, G.: Characterization of long-term and seasonal variations of black carbon (BC) concentrations at Neumayer, Antarctica, Atmos. Chem. Phys., 13, 1579–1590, https://doi.org/10.5194/acp-13-1579-2013, 2013.
Weller, R., Schmidt, K., Teinilä, K., and Hillamo, R.: Natural new particle formation at the coastal Antarctic site Neumayer, Atmos. Chem. Phys., 15, 11399–11410, https://doi.org/10.5194/acp-15-11399-2015, 2015.
Zabel, P., Zeidler, C., Vrakking, V., Dorn, M., and Schubert, D.: Biomass
Production of the EDEN ISS Space Greenhouse in Antarctica During the 2018
Experiment Phase, Front. Plant Sci., 11, 656,
https://doi.org/10.3389/fpls.2020.00656, 2020.
Zeidler, C., Woeckner, G., Schöning, J., Vrakking, V., Zabel, P., Dorn,
M., Schubert, D., Steckelberg, B., and Stakemann, J.: Crew time and workload
in the EDEN ISS greenhouse in Antarctica, Life Sciences in Space Research,
31, 131–149, https://doi.org/10.1016/j.lssr.2021.06.003, 2021.
Zitterbart, D. P., Wienecke, B., Butler, J. P., and Fabry, B.: Coordinated Movements
Prevent Jamming in an Emperor Penguin Huddle, PLoS ONE, 6, e20260,
https://doi.org/10.1371/journal.pone.0020260, 2011.
Short summary
For over 45 years, teams composed of scientists, technicians, doctors, and cooks have been wintering in Antarctica in the service of German Antarctic research. They thus form a cornerstone of long-term scientific measurements in this remote and unique place with regard to future scientific investigations. In this article, we highlight the research being conducted at the permanently crewed Neumayer Station III and its predecessors and the role of the overwinterers in this research endeavour.
For over 45 years, teams composed of scientists, technicians, doctors, and cooks have been...